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Statistics of Energy Levels and Zero Temperature
Dynamics for Deterministic Spin Models with
Glassy Behaviour
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We consider the zero-temperature dynamics for the infinite-range, non transla-
tion invariant one-dimensional spin model introduced by Marinari, Parisi and
Ritort to generate glassy behaviour out of a deterministic interaction. It is
argued that there can be a large number of metastable (i.e., one-flip stable)
states with very small overlap with the ground state but very close in energy to
it, and that their total number increases exponentially with the size of the
system.

KEY WORDS: Metastable states; Glauber dynamics; deterministic spin
glasses; random octagonal model; Gauss sums; discrete Fourier transform.

1. INTRODUCTION

A main issue in glassy systems is the analogy between glass-forming liquids
and discontinuous spin-glasses, first pointed out in the pioneering works by
Kirkpatrick, Thirumalai and Wolynes [KTW]. In both cases the thermo-
dynamical properties can be indeed related to the dynamical evolution in
an energy landscape. In liquid theory one can define the notion of inherent
structures [SW] (local minima of the potential energy, each one surronded
by its attraction basin or valley) and configurational entropy, i.e., the
logarithm of the number of these minima divided by the number of particles
in the system. Then the low-temperature dynamical evolution can be
described as a superposition of an intra-basin ``fast'' motion and a ``slow''
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crossing of energy barriers. If the temperature of the system is small
enough, namely less than the Mode Coupling critical temperature TMC , the
system gets trapped in one of the basins. Since the number of energy minima
diverges exponentially with the size of the system, a thermodynamic transi-
tion can be associated with an entropy crisis: the Kauzmann temperature
TK of the glassy transition corresponds to the vanishing of the configura-
tional entropy. We refer the reader to [MP] for an overview on equi-
librium thermodynamics of glasses.

Consider now the class of discontinuous spin glasses, i.e., the mean-
field models involving a random p-spin interaction. Also these models show
a dynamical transition at a temperature TD (corresponding to TMC) where
dynamical ergodicity breaks down; a thermodynamic entropy-driven tran-
sition takes place at a lower temperature T1RSB (corresponding to TK), at
which replica symmetry breaks down with a ``one step'' pattern. Here the
local minima of the free energy correspond to the solutions of the mean
field TAP equations. Anyway, in infinitely connected spin glasses at tem-
perature T=0, metastable states with respect to any dynamics reduce to
1-spin-flip stable states.

The main gap in the analogy between structural glasses and discon-
tinuous spin glasses is that in the latter models, unlike the former, the
couplings between spins are quenched random variables. A significant,
recent step in filling this gap has been made by the introduction of the
deterministic, i.e., non-random, spin models which show a dynamical phase
transition with a discontinuous order parameter and an equilibrium phase
transition at a lower temperature associated with the vanishing of the high
temperature entropy [MPR, BM, BDGU, NM, PP]. It is the high degree
of frustration among the couplings, not the disorder, to generate a huge
number of metastable states and thus the glassy behaviour. The discovery of
these models proved that disorder is not necessary to reproduce a complex
free energy landscape.

Metastables states in infinite-range disordered spin-glasses have been
extensively studied, both in the SK model where the number of 1-spin-flip
stable states scales like exp(0.1992N ) [TE, BrM, DGGO, MPV], N being
the size of the system (number of spins in the one-dimensional case), and
in p-spin interaction spin-glasses [OF].

Here we deal with the same question in deterministic models. By
probabilistic arguments we will obtain, for the models introduced in
[MPR], a lower bound on the number of 1-spin-flip stable states, which
increases exponentially with the size of the system. Hence this deterministic
model exhibits the main feature of glassy behaviour.

The paper is organized as follows: in Section 2 we review the basic prop-
erties of the model we consider, the sine model of [MPR], a deterministic,
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one dimensional chain of N spins with long-range oscillating interactions.
In Section 3 we study the limiting distribution of the rescaled energy den-
sity, showing that it gets $-distributed in the thermodynamic limit. This
property, which holds for the Curie�Weiss case, is an indication of the
mean-field nature of the model. In Section 4 we deal with the state space
of the system, computing explicitly (for N prime analytically, for other
values of N numerically) the distribution of the energy levels by flipping
one spin at a time; among other things we show that there can be a large
number of states with almost zero overlap with the ground state but very
close in energy to it. Finally, in Section 5 we describe the mathematical
arguments and the numerical evidence leading to the main conclusion of
the paper, that is a lower exponential bound for the number of metastable
states at temperature T=0.

2. ORTHOGONAL INTERACTION MATRICES AND THE
SINE MODEL

The basic setup is a probability space (7N , FN , PN). The sample space
7N is the configuration space, i.e., 7N=[&1, 1]N whose elements are the
sequences _=(_1 ,..., _N) with _i=\1; FN is the finite algebra with 22N

elements, and the a priori (or infinite-temperature) probability measure PN

is given by

PN(C )=
1

2N :
_ # C

1 (2.1)

The Hamiltonian is the function on 7N defined as

H(_)=&1
2 :

xy

Jxy_x_y=&1
2 (J_, _) (2.2)

where J=(Jxy) is a symmetric real orthogonal N_N matrix given from the
outset. Although many of the results presented here will hold for a generic
symmetric orthogonal matrix (e.g., of the form J=OLOT with L a
diagonal matrix whose elements are \1 and O a generic orthogonal matrix
chosen at random w.r.t. the Haar measure on the orthogonal group) in
what follows we shall examine the following particular example known as
the sine model:

Jxy=
2

- 2N+1
sin _ 2?xy

2N+1& (2.3)
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which satisfies (we assume N odd)4

JJT=Id and :
N

x=1

Jxx= :
N

x=1

J 2
xx=1 (2.4)

This model has been introduced by Marinari, Parisi and Ritort as a deter-
ministic system with high frustration (competing interactions with different
signs and strengths) able to reproduce the complex thermodynamical
behaviour typical of spin glasses [MPR]. It has been investigated analyti-
cally in the high-temperature regime, (through an high-temperature expan-
sion), and numerically also in the low-temperature phase (using Montecarlo
annealing). The analytical study revealed the existence of a static phase
transition at a temperature TS=0.065 where the high-temperature entropy
vanishes, while evidence of the existence of a higher temperature TD=0.134
where the system undergoes a dynamical transition of second order (i.e.,
with a jump in the specific heat) with a discontinuous order parameter has
been put forward by numerical analysis. It has also been shown, using the
replica formalism, that most of the thermodynamical properties of this
model are the same as those of a generic symmetric orthogonal matrix (the
static transition corresponding to RSB while the dynamical transition being
given by the so-called ``marginality condition)''.

3. THE LIMITING DISTRIBUTION OF THE RESCALED
ENERGY LEVELS

The knowledge of the eigenvalues of J imposes simple bounds on the
energy of any spin configuration. Indeed a state vector _ can be decom-
posed into its projections on the various orthogonal eigenspaces relative to
different eigenvalues. Here, due to orthogonality, the possible eigenvalues
are +1, &1 so that

&
N
2

�H(_)�
N
2

(3.5)

Let us consider the rescaled and shifted Hamiltonian (representing the energy
per site, or energy density of the model, plus the ``zero point'' energy 1�2)

h(_)=
H(_)

N
+

1
2

(3.6)
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which takes values in [0, 1]. We shall show that in the limit N � � the
energy density h gets $-distributed at x=1�2. We point out that this
property can be immediately proved for the Curie�Weiss model, thus
indicating a mean field behaviour of the present model in the thermo-
dynamic limit. To this end consider the partition function ZN at inverse
temperature ;:

ZN(;)= :
_ # 7N

exp(&;H(_))=2NEN(e&;H) (3.7)

where EN denotes the expectation w.r.t. PN , and note that the characteristic
function of h can be written as

EN(e&*h)=e&*�2 ZN(*�N )
2N (3.8)

This expression will prove useful to compute the limiting expression of the
characteristic function of the energy density h without knowing the expres-
sion of all its moments. To see this, we first decouple the spins as follows:
let B be an orthogonal matrix such that BTJB=D with D=diag (d1 ,..., dN).
Since det J{0 we have di{0, i=1,..., N, and det J&1=>i d &1

i . Let u # RN

be such that _=Bu. We have (J_, _) =(Bu, JBu) =(u, Du) , and thus

exp \ *
2N

(J_, _)+= `
N

i=1

exp \ *
2N

di u2
i +

= `
N

i=1

1

- 2? |
�

&�
exp \&

x2
i

2
+�*di

N
uixi+ dxi

=
1

(2?)N�2 |
RN

exp \&
1
2

(x, x) +�*
N

(u, D1�2x)+ dx

=
det J&1�2

(2?*)N�2 |
RN

exp \&
1

2*
( y, J &1y) +�_,

y

- N�+ dy

which, together with (2.2), (3.7) and (3.8) yields

EN(e&*h)=e&*�2 det J&1�2

(2?*)N�2 |
RN

exp \&
1

2*
( y, J&1y)+:

i

log cosh
yi

- N+ dy

(3.9)
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(As usual, the square roots appearing in the above formulas are only
apparently ill defined: they disappear in the expansion because it contains
only the even terms). The above integral can be evaluated by means of
standard high-temperature expansion techniques which turn out to be con-
siderably simpler if one assumes that �i Jii=0 (see [PP]). As we have
already noted, this assumption amounts to fix at zero the mean value of the
energy. Also, the division by N of the argument of the partition function
leads to a convergence domain which is increasing as N itself. In this way,
the asymptotic expression (for N � �) of EN(e&*h) can be written in the
form

EN(e&*h)=e&*�2eNG(*�N )(1+O(N &1)) (3.10)

where the function G(x) is an effective specific free energy. For the
orthogonal interaction matrix (2.3) one finds [PP]:

G(x)=
1
4 _- 1+4x2&log \1+- 1+4x2

2 +&1& (3.11)

It has the following expansion in the vicinity of x=0:

G(x)=
x2

4
+O(x3) (3.12)

which, by the way, coincides with what one obtains for the SK model. This
yields

eNG(*�N )=1+
*2

4N
+O \ *3

N 2+ (3.13)

Summarizing, we have found that for any fixed *,

EN(e&*h)=e&*�2 _1+O \ 1
N+& , N � � (3.14)

Using a well known theorem of probability theory [Si] which says that a
distribution function GN converges weakly to G if and only if .N(*) � .(*)
for any * (where .N(*) and .(*) are the characteristic functions of GN and
G respectively) and noting that .(*)=e&*�2 is the characteristic function of
the distribution fct G(x)=/[1�2, �) , we then conclude that the distribution
of h tends to /[1�2, �) .
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4. FLIPPING SPINS FROM THE GROUND STATE AND
STATISTICS OF LEVELS

As already noted in [MPR], for special values of N the ground state,
i.e., the configuration _0 # 7N which minimizes the energy, can be explicitly
constructed. Indeed, for N odd such that p=2N+1 is prime of the form
4m+3, where m is an integer, let _0 be the state given by the sequence of
Legendre symbols, i.e.,

_0
x=\x

p+={+1,
&1,

if x=k2 (mod p)
if x{k2 (mod p)

(4.15)

with k=1, 2,..., p&1. Then (see the Appendix):

H(_0)=&
N
2

(4.16)

A typical ground state for p prime of the form 4m+3 reflects the well
known random distribution of the Legendre symbols (see Fig. 1, where a
pair of ground states are shown for two different N values). No structure
is present at any scale. Nevertheless, denoting by m0 the specific magnetiza-
tion of the ground state, i.e.,

m0=
1
N

:
N

x=1

_0
x=

1
N

:
N

x=1
\ x

p+ (4.17)

one observes that it tends to be a positive function of N, fluctuating around
the value 1�- N . To let the reader better appreciate this fact we plot in
Fig. 2 the total magnetization Nm0 versus N.

For the remaining part of the paper we will restrict to p=2N+1
prime, with p=3 (mod 4). We point out that this set has measure zero as
a subset of the natural numbers. However, we have strong numerical

Fig. 1. Ground state for N=33 and N=113.
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Fig. 2. Total magnetization Nm0 of the ground state versus N, 2N+1=4m+3 prime. The
continuous curve is - N .

evidence that some relevant properties that we are going to discuss here-
after, such as the behaviour of m0(N ), the statistics of energy levels and the
number of metastable states (see below) are somehow generic in N.

Let 0s/7N be the subspace consisting of the ( N
s ) configurations

obtained by starting from the ground state _0 described above and flipping
exactly s different spins. Each point of 0s can thus be identified with a
s-dimensional vector { # [1,..., N ]s of the form {=(x1 ,..., xs), with xi{xj

for i{ j, which specifies the positions of the flipped spins along the chain
of length N. We then define the ``flipping'' map L{ : 7N � 7N as:

(L{_)x={&_x ,
_x ,

x # {
x � {

(4.18)

In this way we can write

0s=[L{_0]{ (4.19)

The correspondence { � _ given by _=L{_0 is plainly one-to-one. There-
fore in the sequel we shall freely identify a state _=L{_0 with the vector {.
Alternatively, we can proceed as follows. Define the overlap q(_) of a given
configuration _ # 7N with respect to the ground state _0 as:

q(_)=
1
N

:
N

x=1

_x_0
x (4.20)
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so that q(_0)=1. Then

0s={_ # 7N : q(_)=1&2
s
N= (4.21)

The following straightforward calculation yields the energy values on the
space 0s : using the definition of L{ , the symmetry of J and the fact that
the ground state _0 is an eigenvector of J to the eigenvalue 1 we have:

H(L{_0)= &
1
2

:
x # {

:
y # {

Jxy_0
x_0

y+
1
2

:
x # {

:
y � {

Jxy _0
x_0

y

+
1
2

:
x � {

:
y # {

Jxy_0
x_0

y&
1
2

:
x � {

:
y � {

Jxy _0
x_0

y

= &
1
2

:
N

x, y=1

Jxy _0
x_0

y+2 :
x # {

:
y � {

Jxy _0
x_0

y

= &
N
2

+2 :
x # {

:
N

y=1

Jxy _0
x_0

y&2 :
x # {

:
y # {

Jxy _0
x_0

y

= &
N
2

+2 :
x # {

(_0
x)2&2 :

x # {

:
y # {

Jxy _0
x_0

y

= &
N
2

+2s&2 :
x # {

:
y # {

Jxy _0
x_0

y (4.22)

Notice that for the Ising mean-field interaction: Jxy=1�N, one finds

H(L{_0)=&
N
2

+2s&2
s2

N
=&

N
2 \1&

2s
N+

2

(4.23)

It is now possible to study the distribution of the energy levels on the
individual subspaces 0s , where s=0, 1,..., N. Let ps be the probability dis-
tribution restricted on 0s , i.e.,

ps(C )=\N
s +

&1

:
_ # C & 0s

1 (4.24)

and let Es denote the expectation w.r.t. ps . The n th moment of the energy
H on the subspace 0s is given by

Es(Hn)#|
0s

H n(_) dps(_)=\N
s +

&1

:
{ # 0s

H n(L{_0) (4.25)
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so that the n th moment EN(H n) of the energy on the whole configuration
space 7N is

EN(Hn)#|
7N

H n(_) dPN(_)=
1

2N :
N

s=0
\N

s + Es(H n) (4.26)

A tedious but straightforward calculation (see Appendix) yields the following
expressions for the first two s-moments:

Es(H)=&
N
2 \1&

2s
N+

2

(4.27)

Vars (H)#Es(H 2)&(Es(H ))2=
4s(s&N )(2s2&2sN+N )

N 2(N&2)
(4.28)

and consequently

EN(H )=&
1
2

, VarN (H)=
N&1

2
(4.29)

These results indicate that, at variance with the ferromagnetic case where
the energy is constant on each subspace 0s , here there is a significant over-
lap between the distributions (for different s values) of the energy when
restricted to 0s . In particular, from the expression of _2

s we see that there
can be a large number of states having small overlap with the ground state
but nevertheless with energy very close to &N�2. For example we have
Vars (H )| s=N�2&N�2, indicating that the energy restricted to the subspace
0N�2 may fluctuate over the whole energy range. This simple phenomenon
is intimately related to the existence of metastable states and it will prove
crucial in the understanding of the zero temperature dynamics, as discussed
below. Figure 3 shows the distributions of the energy restricted to various
subspaces 0s .

Another quantity of interest is the specific magnetization m(_) of an
arbitrary state _ # 7N , given by:

m(_)=
1
N

:
N

x=1

_x (4.30)

In particular, given {=(x1 ,..., xs), we have

m(L{_0)#m({)=m0&
2
N

:
x # { \

x
p+ (4.31)
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Fig. 3. Distributions of the energy over the subspaces 0s . The size of the system is N=23
and s=3, 4,..., 11 from left to right. The cases s=1 and s=2 behave in a similar way, but they
are not plotted because of the small number of sample points for this lattice size N.

Clearly,

1
( N

s )
:

{ # 0s
\ :

x # { \
x
p++=

1
( N

s )
:
N

x=1
\n&1

s&1+ } \x
p+=s } m0 (4.32)

i.e.,

Es(m)=
1

( N
s )

:
{ # 0s

m({)=m0 \1&2
s
N+ (4.33)

Moreover, we show in the Appendix that

Vars (m)=
4s(N&s)
N 3(N&1)

+
4s(s&1)

N 3(N&1)
} :

p

x=1
\x

p+ dN(x) (4.34)

where dN(x) is the integer valued function giving the number of elements
u # [1,..., N ] such that u&1x # [1,..., N ] (where u&1 denotes the inverse
mod p of u). As will be discussed in the Appendix, dN(x) takes values

1295Statistics of Energy Levels and Zero Temperature Dynamics



around p�4 with rather small fluctuations. Since � p
x=1 (x�p)=0, the last

term in (4.34) can be considered as a small correction to the constant value
4s(N&s)�N 3(N&1).

5. ZERO TEMPERATURE DYNAMICS AND
METASTABLE STATES

We first introduce the following discrete 1-flip dynamics, given by:

_(t+1)={L|(t) _(t),
_(t),

if H(L| _)<H(_)
otherwise

where, for each t, |(t) is chosen randomly in [1,..., N ] with uniform distribu-
tion. Choosing an initial condition _(0) at random with respect to PN , one
obtains a random orbit [_(0), _(1),..., _(l)] for any realization [|(t)]1�t�l

of length l. As a consequence of the previous analysis, we might encounter
the following two situations which effect the convergence of the dynamics
to the ground state.

On one hand, it may happen that starting from _(0) one reaches after t
iterations a state _(t) # 0s , of the form _(t)=L{_0 for some {=(x1 ,..., xs),
such that H(L{_0)<H(L| L{_0) for any | # [x1 ,..., xs]. On the other hand
one can reach _(t) # 0s such that for some | # [1,..., N ], L| _ # 0s+1 and
H(L|(t))<H(_(t)). Namely, in order to decrease the energy, one must
decrease the overlap with the ground state.

Due to the above observations, the overlap function q(_(t)) between
_(t) and the ground state is not in general monotonically non-decreasing
along a given random orbit (this at variance with the Ising mean field
model). In particular there might be metastable states [NS]. Given
| # [1,..., N ], we shall say that a configuration _ # 7N is |-stable if

H(L|_)>H(_) (5.35)

We say that _ is 1-flip stable if it is |-stable \| # [1,..., N ]. Analougsly a
configuration _ is said to be k-flip stable if its energy cannot be decreased
by flipping any subset of k (or less than k) spins. It has been recently
recognized [BiM] that generally for finite dimensional systems the zero
temperature metastable states (i.e., solutions of TAP equations) coincide
with �-flip stable configurations. However in mean-field models with
infinite connectivity, like SK, due to the vanishing of couplings in the
thermodynamical limit, there is a degeneracy between k-flip stable for every
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finite k. Namely, in the limit N � �, any k-flip stable configuration is also
k+1-flip stable. In the present case the same argument of [BiM] can be
applied (since the couplings Jij=O(1�- N)) so that metastable states can be
studied just by considering 1-flip stable states. We denote by n(N ) the total
number of such metastable states as a function of N.

From (4.22) one readily obtains that

H(L| _)=H(_)+2 :
x{|

Jx|_x_| (5.36)

so that _ is |-stable if and only if

(J_)| _|>J|| (5.37)

Summing over | and using (2.4) we see that if _ is 1-flip stable then

(J_, _) >1 (5.38)

Recalling the expression (2.2) of the Hamiltonian we see that a necessary
condition for _ # 7N to be 1-flip stable is that

H(_)<EN(H )=&1
2 (5.39)

The main goal of this paper is to give an estimate of the number of
metastable states for any given N. To this end we first performed some
numerical investigations. For N�30 we performed an exact enumeration
of all configurations, whereas for larger N we run the zero temperature
dynamics described above (``deep quench'') for a number of realizations
[|(t)] as large as 108 for bigger sizes, keeping track of the metastable
states. As shown in Fig. 4, the growth of these states is exponential for
generic values of the N. The best numerical fit yields

n(N )&C } e0.28N (5.40)

We remark that the same behaviour has been observed in [PP] for
the Random Orthogonal Model; for spin glasses see [PP2]. We now
proceed to give a partial justification of this result by means of probabilistic
arguments.

Let {=(x1 ,..., xs) and | # [1,..., N ] be given. Using (5.36) and
J_0=_0, it is easy to see that if | � { (i.e., L|_ # 0s+1)

H(L| _)=H(_)+2 \1&J||&2 :
x # {

Jx|_0
x_0

| +

1297Statistics of Energy Levels and Zero Temperature Dynamics



File: 822J 293914 . By:XX . Date:20:12:00 . Time:09:35 LOP8M. V8.B. Page 01:01
Codes: 1208 Signs: 476 . Length: 44 pic 2 pts, 186 mm

Fig. 4. The number of metastable states n(N ) for N. The line represents the best fit
n(N )re*N with *r0.28 for values of N such that p=2N+1 is a prime of the form 4m+3
(filled points). Other points are for generic integer N.

whereas, if | # { (i.e., L| _ # 0s&1), we have

H(L| _)=H(_)&2 \1+J||&2 :
x # {

Jx|_0
x_0

| +
If we define

h({, |)= :
x # {

Jx|_0
x_0

| (5.41)

we then see that a configuration _=L{_0 is |-stable if and only if

{h({, |)< 1
2 (1&J||),

h({, |)> 1
2 (1+J||),

if | � {
if | # {

(5.42)
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We now dwell upon the problem of characterising the behaviour of the
function h({, |) so as the condition (5.42) can be effectively used to
estimate the number of metastable states. Let us rewrite h({, |) in the form

h({, |)=
2

- p
:

x # {

!x(|) (5.43)

where

!x(|) :=\|x
p + sin _2?|x

p & (5.44)

Now, having fixed { and x # {, we can view the function !x(|) defined in
(5.44) as a random variable uniformly distributed on [1,..., N ] and taking
values in [&1, 1]. Its mean and variance are easily computed:

E(!)=
1
N

:
N

|=1
\|x

p + sin _2?|x
p &=

- p
2N

(5.45)

and, using (2.4),

Var(!)=
1
N

:
N

|=1

sin2 _2?|x
p &&+2

x=
p

4N \1&
1
N+ (5.46)

Here we want to study the behaviour of the sum '({, |) :=�x # { !x(|). We
remark that this sum, and thus h({, |)=2'({, |)�- p, has to be regarded
as a r.v. defined on the product of two probability spaces: for each fixed {,
it is the sum of the identically distributed random variables !x(|) on the
space [1,..., N ] with uniform distribution (this comes from the very defini-
tion of the zero temperature dynamics); on the other hand, for each fixed
|, it can be regarded as a r.v. on 0s viewed as a probability space endowed
with the distribution ps . Its mean is given by (recall that the symbol Es

denotes the expectation wrt ps):

Es(')=\N
s +

&1

:
{=(x1 ,..., xs)

:
x # {

!x(|)=\N
s +

&1

:
N

x=1
\N&1

s&1 + !x(|)

=
s
N

:
N

x=1

!x(|)=
s - p
2N

(5.47)
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which does not depend on | and equals s times +x . Along the same lines
one shows that

Vars(')=
sp
4N \1&

s
N+ (5.48)

Notice that unlike the means, here we have Vars('){s } Var(!). This dis-
crepancy comes from the fact that, for any fixed |, the sequence !x1

, !x2
,...,

!xs
is a sequence of distinct (and ordered) elements so that by no means we

can view ' as a sum of independent and identically distributed objects.
Nonetheless, also supported by strong numerical evidence (see Fig. 5), we

Fig. 5. Distribution of the function h({, |) for a fixed | # [1,..., N ] and { varying in 0s .
Here N=23 and s=3 (a) and s=11 (b). The solid line is the gaussian distribution in the r.h.s.
of (5.50).
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claim that a version of the central limit theorem is applicable so that when
N � �, s � � with s�N � *, we have

ps \:<
'&Es'

- Vars '
<;+�

1

- 2? |
;

:
e&y2�2 dy (5.49)

Assuming the validity of (5.49), performing the change of variables y=
(x&*)�- #, with #=*(1&*), and setting a=*+a - #, b=*+; - #, we
thus obtain an asymptotic gaussian distribution for h( } , |):

ps(a<h({, |)<b) �
1

- 2?# |
b

a
e&(x&*)2�2# dx (5.50)

Note that the r.h.s. does not depend on |. One can actually say more: for
any |~ , | # [1,..., N ] we have h(|~ &1{, |~ |)=h({, |). Therefore the set of
values of h( } , |) on 0s does not depend on the choice of |, i.e., [h({, |)]{ # 0s

=[h({$, |$)]{$ # 0s
, for all |, |$.

Having fixed an order for the lattice points (|1 ,..., |N), |j{|k , we
now consider the following quantities:

?s, N(|k)= ps([_ # 0s : H(L|k
_)>H(_)]) (5.51)

the ps-probability that a randomly chosen state _ # 0s is |k -stable,

?s, N(|k+1 | |1 ,..., |k)

=ps([_ # 0s : H(L|k+1
_)>H(_) | H(L|j

_)>H(_), |j=|1 ,..., |k])

(5.52)

the conditional ps-probability that a randomly chosen state _ # 0s is |k+1 -
stable given that it is |j -stable for j=1,..., k, and

?s, N= ps([_ # 0s : H(L|_)>H(_), |=|1 ,..., |N]) (5.53)

the ps-probability that a randomly chosen state _ # 0s is 1-flip stable (i.e.,
stable for all possible flipping). Notice that by condition (5.42) the last
quantity can be written as

?s, N=\N
s +

&1

:
(x1 ,..., xs)={

(y1 ,..., yN&s)={c

`
s

i=1

% \h({, x i )>
1+Jxi xi

2 +

_ `
N&s

j=1

% \h({, yj )<
1&Jyi yi

2 + (5.54)
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The three quantities introduced above are related by the following identity:

?s, N=?s(|1) } ?s(|2 | |1) } ?s(|3 | |1 , |2) } } } ?s(|N | |1 ,..., |N&1) (5.55)

and the total number of 1-flip stable states in 7N is, by definition,

n(N )= :
N

s=0
\N

s + ?s, N (5.56)

We shall study the quantity n(N ) in the thermodynamic limit: N � �,
s � �, with s�N � * and 0<*<1. In this regime we write ?s, N#?* and
apply Stirling's formula to obtain

\N
s +t

eNF(*)

- 2?N*(1&*)
, with F(*)=&* log *&(1&*) log(1&*)

(5.57)

Note that F(*) is concave and symmetric around *=1�2, with F(1�2)=log 2.
In this way we get for N large and s&*N with * ranging in the unit interval,

n(N )&|
1

0 �
N

2?*(1&*)
exp _N \F(*)+

log ?*

N +& d* (5.58)

It thus remains to estimate the probability ?* . Let us consider first the
unconditioned probability (5.51). According to (5.42) and the total prob-
ability formula we have:

?s, N(|k)=
s
N

ps \h({, |k)>
1+J|k |k

2 } { % |k+
+\1&

s
N+ ps \h({, |k)<

1&J|k |k

2 } { %% |k + (5.59)

Here s�N and 1&s�N are the probabilities that { % |k and { %% |k , respec-
tively. We can easily compute the conditional expectations

E(h | { % |k)=\N&1
s&1 +

&1 2

- p
:

{ % |k

:
x # {

!x(|k)=
s&1
N&1

&\s&N
N&1+ J|k |k

(5.60)

and

E(h | { %% |k)=\N&1
s +

&1 2

- p
:

{ %% |k

:
x # {

!x(|k)=
s

N&1
(1&J|k |k

) (5.61)
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In a similar way one can compute the variances #+(|k) and #&(|k) con-
ditioned to the events [{ % |k] and [{ %% |k]. For N large and s&*N,
retaining only terms O(1), one gets

E(h | { % |k)&E(h | { %% |k)&*, #&(|k)&#+(|k)&#=*(1&*)

(5.62)

Moreover in the thermodynamic limit specified above we write ?s, N(|k)#
?*(|k) and argue from (5.50) the following approximate expression for
?*(|k):

?*(|k)&
*

- 2?# |
�

1�2
e&(x&*)2�2# dx+

(1&*)

- 2?# |
1�2

&�
e&(x&*)2�2# dx

=
1
2

+\1
2

&*+ erf \1�2&*

- 2# + (5.63)

where we have denoted the error function by

erf (z)=
2

- ? |
z

0
e&x2 dx (5.64)

It is not difficult to check that the r.h.s. of (5.63) is convex and symmetric
around *=1�2, where it reaches its minimum value equal to 1�2.

Let us now come to ?s, N . In principle this quantity is to be computed
by specifying the whole set of constraints embodied in (5.54) or, which is the
same, by computing the conditional probabilities appearing in Eq. (5.55).
However, this appears to be a difficult task. A first approach which dras-
tically simplifies this task is to forget about the constraints implied by
(5.54) and assume that (in the thermodynamic limit) the various |-stability
conditions become mutually independent, that is ?*(|k+1 | |1 ,..., |k)=
?*(|k+1), for all k=1,..., N&1, so that

?*= `
N

k=1

?*(|k) (5.65)

Recalling Eq. (5.58) and (5.63), one is led to the following expression for
n(N ):

n(N )&|
1

0 �
N

2?*(1&*)
exp(NG1(*)) d* (5.66)
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Fig. 6. The function G1(*) of Eq. (5.67) for * # [0, 1].

where

G1(*)=F(*)+log
1
2

+\1
2

&*+ erf \1�2&*

- 2# + (5.67)

We show the shape of the function G1(*) in Fig. 6. Evaluating the integral
(5.66) with the saddle-point method one gets

n(N )&Ce0.14N (5.68)

Notice that the exponent is the half of what is observed numerically
(cfr. (5.40)). In the remaining part of the paper we shall argue that (5.68)
is indeed an estimate from below of the actual number of metastable states.

The above discussion has been able to reproduce the exponential
growth of the number of metastable states with the size of the system. To
understand the discrepancy between the estimated exponent and the one
measured numerically one should note that the nature of the interaction
makes the conditional probabilities play a major role in the asymptotics
of the number of metastable states. To be more precise, our approxi-
mation which assumes mutually independent individual |-stability events,
i.e., ?*(|k+1 | |1 ,..., |k)&?*(|k+1), is actually reasonable only for small
value of k (this can be checked, for example, calculating the correlation
functions). As numerical results show, for large values of k the specific form
of the interactions make these events strongly dependent. In Fig. 7 we show
the function P(k) providing the average of ?*(|k+1 | |1 ,..., |k) over a
large sample of different permutations (|1 ,..., |N) of the lattice points. The
conditional probabilities P(k) grow monotonically, almost linearly, from
the initial (unconditioned) value up to a number close to 1. In other words,
requiring that a large number k of spins produce an |-stable state increases
substantially the probability of doing the same for the remaining spins.
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Fig. 7. P(k) versus k, for N=15 (circle), 21 (square), 23 (diamonds) and s=[N�2]. The
conditional probabilities have been averaged over a sample of 1000 choices of (|1 ,..., |N).

Another way of understanding the constructive effect of the correla-
tions is the following. Consider again the function h({, |). Having fixed
|k+1 , we have already noticed that for s and N large enough the values of
h({, |k+1) with { # 0s are approximately distributed according to a
gaussian probability density with mean *=s�N and variance #=*(1&*),
regardless of the particular value of |k+1. Thus, in particular, the same
distribution are expected to arise if one considers the values of h({, |k+1)
constrained to the subsets of configurations such that |k+1 # {, or |k+1 � {.
On the other hand, if one picks |1 , |2 ,..., |k with |j{|k+1 , j=1,..., k,
and computes numerically the two conditional distributions of the values of
h({, |k+1) given |1 -stability,..., |k-stability (again with the constraints
|k+1 # { or |k+1 � {), one finds that their means move to opposite direc-
tions, thus increasing the probability of |k+1-stability (see (5.59)). This is
shown in Fig. 8, where a system of size N=21 and s=10 is considered.
The two central distributions correspond to the unconditioned cases,
namely the values of h({, |) for { # 010 with the only constraints | # { or
| � {, respectively. Considering instead the values taken by h on the states
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Fig. 8. Graphs of the four distributions of the values of h described in the text.

{ which, besides the constraints specified above, are stable with respect the
first 10 spins, one finds two distributions whose mean values have moved
towards opposite directions. An average over | has been performed.

6. CONCLUSION

We have investigated the statistical properties of energy levels and
metastables states for a class of deterministic models, the most repre-
sentative being the sine model [MPR], which have attracted much atten-
tion in recent years for their glassy behaviour despite the non-random
nature of the interaction. We have pushed further on the analogy with
glassy systems, proving a number of properties typical of disordered spin
models. In particular, using number theoretic methods, we have described
the energy (equivalently, free energy at T=0) landscape as a function of
configurations with a fixed overlap with the ground state. The analysis
revealed the existence of states very different from the ground state but
with energy arbitrarily close to it: this corresponds to the ``chaoticity''
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property of spin-glasses systems, well established in long range models.
More importantly, some of these states can be local energy minima (equiv-
alently, 1-flip stable at T=0). They are expected to have a significant
weight on the partition function in the low-temperature region, giving rise
to the non-equibrium behaviour observed in annealing Montecarlo experi-
ments. We have been able to estimate the approximate number of these
energy minima. The analytic computations, combined with the numerical
findings, strongly support the conclusion that the bound (5.68) estimates
from below the number of metastable states n(N ), proving their exponential
increase with the size of the system.

A number of basic questions about metastability arises now in a
natural way, such as computing the energy density distributions of meta-
stables states, studying energy barriers among them and their attraction
basins. These problems are currently under investigation using the
approach developed in this paper and will be addressed elsewhere.

APPENDIX

Proof of (4.16). Choose N odd such that p=2N+1 is prime of the
form 4m+3, where m is an integer. Denote by _0 the spin configuration
given by the sequence of Legendre symbols, i.e.

_0
x=\x

p+={+1,
&1,

if x=k2 (mod p)
if x{k1 (mod p)

with k=1, 2,..., p&1. Let us show that _0=(_0
1 } } } _0

N) is the ground state
for the sine model or, which is the same, that _0 is an eigenvector of J with
eigenvalue 1. For basic results of number theory used in the proof see, for
example, [Ap].

(J_0)y=
2

- p
:N

x=1

sin _2?xy
p & \x

p+
=

2

- p
:
N

x=1

1
2i \exp _i2?xy

p & \ x
p+&exp _&i2?xy

p & \x
p++

changing x [ &x in the second summation

=
1

i - p _ :
N

x=1

exp _i2?xy
p & \ x

p+& :
&1

x=&N

exp _i2?xy
p & \&x

p +&
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using multiplicativity of Legendre symbols: \&x
p +=\&1

p +\x
p+

and the fact that \&1
p +=&1 if p=3 (mod 4)

=
1

i - p _ :
N

x=1

exp _i2?xy
p & \ x

p++ :
&1

x=&N

exp _i2?xy
p & \ x

p+&
using the periodicity of Legendre's symbols: \x+ p

p +=\x
p+

=
1

i - p _ :
N

x=1

exp _i2?xy
p & \ x

p++ :
2N

x=N+1

exp _i2?xy
p & \x

p+&
being \ p

p+=0 by definition

=
1

i - p
:
p

x=1

exp _i2?xy
p & \ x

p+
using the separability for Gauss sums

=
1

i - p \
y
p+ :

p

x=1

exp _i2?x
p & \ x

p+
evaluating the Gauss sum

=
1

i - p \
y
p+ i - p=_0

y

which is the desired property.

Proof of (4.27) and (4.28). We sketch the basic steps of the
calculation. Set

:=&
N
2

+2s cj=\N& j
s& j +

We then have

Es(Hn)=
1
c0

:
{ # 0s

\:&2 :
x # {

:
y # {

Jxy+
n

=
1
c0

:
{ # 0s

:
n

k=0 \
n
k+ :n&k \&2 :

x # {

:
y # {

Jxy+
k
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For n=1 we get

:
{ # 0s

\ :
x # |

:
y # |

Jxy+= :
N

x=1

:
N

y{x, y=1

c2Jxy _x_y+ :
N

x=1

c1Jxx

= :
N

x=1

:
N

y=1

c2Jxy _x_y+ :
N

x=1

(c1&c2) Jxx

=c2(N&1)+c1

whereas for n=2 we have

:
| # 0s

\ :
x # |

:
y # |

Jxy+
2

= :
N

z=1

:
N

u{z; u=1

Jzu_z_u _ :
N

x{z, u; x=1

:
N

y{z, u, x; y=1

c4Jxy_x_y

+ :
N

y{z, u; y=1

c3Jzy_z_y+ :
N

y{z, u; y=1

c3Juy_u_y

+ :
N

x{z, u; x=1

c3Jxz_x_z+ :
N

x{z, u; x=1

c3Jxu_x_u

+ :
N

x{z, u; x=1

c3Jxx+c2 Jzu _z_u+c2Jzz+c2Juu&
+ :

N

z=1

Jzz _ :
N

x{z; x=1

:
N

y{z, x; y=1

c3 Jxy _x_y

+ :
N

x{z; x=1

c2Jxz_x_z+ :
N

y{z; y=1

c2Jyz _y_z+ :
N

x{z; x=1

c2Jxx+c1Jzz&
=c4(N&1)(N&3)+2c3(N&1)+2c2(N&1)+c1

which easily give the desired identities.

Proof of (4.34). Let us first extend everything to the set [1, 2,...,
p&1] which, p being prime, is a number field. Here we can exploit the
multiplicative structure of the field and of the ``extended ground state''
_0

x=(x�p), x=1,..., q, with q= p&1. With slight abuse of notation we shall
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use the same symbols 0s , ps and Es to denote the corresponding extended
quantities. It is immediate to see that m(_0)=0 and

Es(m)=
1

( q
s)

:
{ # 0s

\&2
q

:
x # { \

x
p++=0

In order to calculate the second moment we consider

1
( q

s) �{ # 0s
\ :

x # { \
x
p++

2

=
1

( q
s)

:
{ # 0s

\ :
x # {2 \

x
p++

=
1

( q
s)

:
q

x=1

cp(x) \x
p+

where, for any given { # 0s , {2 is the collection, with multiplicity, of all
possible products xj } xi , xi , x j # { (all the operations are mod p). For
example, if {=[x1 , x2 , x3] then {2=[x1 , x2 , x3 , x1x2 , x1 x3 , x2x1 , x3 x1 ,
x2 x3 , x3x2]. Also, for any given x # [1,..., q],

cp(x)= :
{ # 0s

[number of times x # {2]= :
q

u=1

>[{ | u # { and u&1x # {]

In particular, if (x�p)=&1 then u{u&1x, \u=1,..., q, therefore

cp(x)= :
q

u=1
\q&2

s&2+=q \q&2
s&2+

If instead (x�p)=1, then there exists u� such that u� 2=x, i.e.,

cp(x)= :
u{ \u� \

q&2
s&2++2 \q&1

s&1+=(q&2) \q&2
s&2++2 \q&1

s&1+
Putting everything together we get the following expression for the
variance _2

s(m):

_2
s (m)=

4
q2( q

s)
:

{ # 0s
\ :

x # { \
x
p++

2

=
4

q2( q
s) _&

q2

2 \q&2
s&2++

q
2

(q&2) \q&2
s&2++q \q&1

s&1+&
=

4
q( q

s) _\
q&1
s&1+&\q&2

s&2+&=
4s(q&s)
q2(q&1)
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Fig. 9. The function dN(x) versus x, for N=551 and N=933.

We now turn back to our the original lattice [1,..., N ]. Again we can write

1
( N

s )
:

{ # 0s
\ :

x # { \
x
p++

2

=
1

( N
s )

:
p

x=1

cN(x) \ x
p+

In this case, however, the multiplicity function cN(x) cannot be handled as
easily as before. In particular, given x # [1,..., N ], we denote by 1 (x) the
set =[u1 ,..., udN (x)] given by the u's in [1,..., N ] such that u&1x # [1,..., N ].
The cardinality dN(x) of the set 1 (x) is a non trivial function of x. It is
shown in Fig. 9 for 1�x�N. If now (x�p)=&1, then clearly

cN (x)=dN (x) } \N&2
s&2 +

On the other hand, if (x�p)=1 (i.e., u� 2=x), then (note that either
u� # [1,..., N ] or &u� # [1,..., N ])

cN(x)=(dN(x)&1) } \N&2
s&2 ++\N&1

s&1 +
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We can then use these informations and write

1
( N

s )
:

{ # 0s
\ :

x # { \
x
p++

2

=
1

( N
s )

:
p

x=1

cN(x) \ x
N+

=
1

( N
s ) _& :

(x�p)=&1

dN(x) } \N&2
s&2 +

+ :
(x�p)=1

\(dN(x)&1) } \N&2
s&2 ++\N&1

s&1 ++&
=

1
( N

s ) _\
N&2
s&2 + } :

p

x=1

dN(x) \ x
p++

+\\N&1
s&1 +&\N&2

s&2 ++ } :
(x�p)=1

1&
Finally, we have the following expression for the variance _2

s(m) of the
magnetization m over the space 0s :

_2
s (m)=

4
N 2 Es \\ :

x # { \
x
p++

2

+&
4s2(m0)2

N 2

from which one easily gets formula (4.34).
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